دانلود پاورپوینت شبکه های عصبی مصنوعی
نوع فایل: power point
فرمت فایل: pptx
قابل ویرایش
تعداد اسلاید : 85 صفحه
قسمتی از پاورپوینت :
شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
یادگیری شبکه عصبی در برابر خطاهای داده های آموزشی مصون بوده و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار، شناسائی و تعبیر تصاویر، و یادگیری روبات اعمال شده است.
روشی برای محاسبه است که بر پایه اتصال به هم پیوسته چندین واحد پردازشی ساخته میشود.
شبکه از تعداد دلخواهی سلول یا گره یا واحد یا نرون تشکیل میشود که مجموعه ورودی را به خروجی ربط میدهند.
محاسبه یک تابع معلوم
تقریب یک تابع ناشناخته
شناسائی الگو
پردازش سیگنال
یادگیری
خطا در داده های آموزشی وجود داشته باشد.
مثل مسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند.
مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی.
تابع هدف دارای مقادیر پیوسته باشد.
زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد.
نیازی به تعبیر تابع هدف نباشد. زیرا به سختی میتوان وزنهای یادگرفته شده توسط شبکه را تعبیر نمود.
نوع فایل: power point
فرمت فایل: pptx
قابل ویرایش
تعداد اسلاید : 85 صفحه
قسمتی از پاورپوینت :
شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
یادگیری شبکه عصبی در برابر خطاهای داده های آموزشی مصون بوده و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار، شناسائی و تعبیر تصاویر، و یادگیری روبات اعمال شده است.
روشی برای محاسبه است که بر پایه اتصال به هم پیوسته چندین واحد پردازشی ساخته میشود.
شبکه از تعداد دلخواهی سلول یا گره یا واحد یا نرون تشکیل میشود که مجموعه ورودی را به خروجی ربط میدهند.
محاسبه یک تابع معلوم
تقریب یک تابع ناشناخته
شناسائی الگو
پردازش سیگنال
یادگیری
خطا در داده های آموزشی وجود داشته باشد.
مثل مسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند.
مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی.
تابع هدف دارای مقادیر پیوسته باشد.
زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد.
نیازی به تعبیر تابع هدف نباشد. زیرا به سختی میتوان وزنهای یادگرفته شده توسط شبکه را تعبیر نمود.